Вариант № 26

Задача № 1

Задание:

При градуировке средства измерения с линейной функциональной характеристикой получены числовые значения экспериментальных данных (таблица 1). По полученным данным найти методом наименьших квадратов аналитические выражения для градуировочной характеристики и построить ее графически.

Таблица 1 – Экспериментальные данные

i	1	2	3	4	5	6	7	8	9	10
X_i	0	5	10	15	20	25	30	35	40	45
Yi	160,0	170,7	180,4	190,5	200,1	200,9	205,2	208,3	210,	215,0
									6	

Решение:

1) Линейная градуировочная характеристика описывается выражением:

$$Y = a_0 + a_1 \cdot X,$$

где коэффициенты a_0 и a_1 методом наименьших квадратов находятся по формулам:

$$a_{0} = \frac{\sum_{i=1}^{n} X^{2} \cdot \sum_{i=1}^{n} Y - \sum_{i=1}^{n} X \cdot \sum_{i=1}^{n} X \cdot Y}{n \cdot \sum_{i=1}^{n} X^{2} - \left(\sum_{i=1}^{n} X\right)^{2}},$$

$$a_{1} = \frac{n \cdot \sum_{i=1}^{n} X \cdot Y - \sum_{i=1}^{n} X \cdot \sum_{i=1}^{n} Y}{n \cdot \sum_{i=1}^{n} X^{2} - \left(\sum_{i=1}^{n} X\right)^{2}}.$$

1

Находим параметры уравнения методом наименьших квадратов:

Система уравнений МНК:

$$\begin{aligned} &a_0n + a_1 {\textstyle \sum} x = {\textstyle \sum} y \\ &a_0 {\textstyle \sum} x + a_1 {\textstyle \sum} x^2 = {\textstyle \sum} y {\textstyle \cdot} x \end{aligned}$$

X	у	\mathbf{x}^2	y^2	ху
0	160	0	25600	0
5	170,7	25	29138,49	853,5
10	180,4	100	32544,16	1804,0
15	190,5	225	36290,25	2857,5
20	200,1	400	40040,01	4002,0
25	200,9	625	40360,81	5022,5
30	205,2	900	42107,04	6156,0
35	208,3	1225	43388,89	7290,5
40	210,6	1600	44352,36	8424,0
45	215,0	2025	46225,0	9675,0
225	1941,7	7125	380047,01	46085,0
Ср.знач.	194,17	712.5	38004,7	4608,5

Для имеющихся данных система уравнений имеет вид:

$$10 a_0 + 225a_1 = 1941,7$$

$$225 a_0 + 7125a_1 = 46085,0.$$

Из первого уравнения выражаем а₀ и подставим во второе уравнение.

Получаем:

$$a_0 = 168,024;$$

$$a_1 = 1,162.$$

Уравнение тренда:

$$Y = 168,024 + 1,162X$$
.

Эмпирические коэффициенты тренда a_0 и a_1 являются лишь оценками теоретических коэффициентов β_i , а само уравнение отражает лишь общую тенденцию в поведении рассматриваемых переменных.

Коэффициент тренда $a_1 = 1,162$ показывает среднее изменение

результативного показателя (в единицах измерения у) с изменением периода времени х на единицу его измерения. В данном примере с увеличением х на 1 единицу, у изменится в среднем на 1,162.

Изучена временная зависимость Y от времени X. На этапе спецификации был выбран линейный тренд. Оценены его параметры методом наименьших квадратов. Возможна экономическая интерпретация параметров модели — с каждым периодом времени X значение Y в среднем увеличивается на 1,162 ед. изм.

Графически уравнение тренда построено на рисунке 1, где точками нанесены экспериментальные данные.

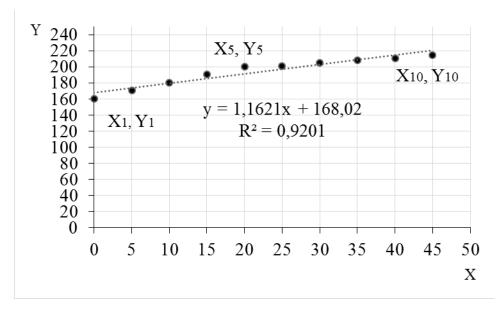


Рисунок 1 – Градуировочная характеристика

Задача № 2

Задание:

По экспериментальным данным (таблица 2) многократных наблюдений при прямом измерении параметра X, вычислить результат измерения — \overline{X} и его случайную составляющую погрешности Δ , при $P\alpha = 0.68$ (t $\alpha = 1$), $P\alpha = 0.95$ (t $\alpha = 2$), $P\alpha = 0.997$ (t $\alpha = 3$).

Таблица 2 – Экспериментальные данные наблюдения температуры

i	T_{i} [°C]	$\Delta T_i = T_i - \overline{T}$	$\Delta T_i^2 * 10^{-6}$
1	1,4	-0,49	240100
2	1,2	-0,69	476100
3	2,7	0,81	656100
4	1,5	-0,39	152100
5	1,6	-0,29	84100
6	2,5	0,61	372100
7	2,9	1,01	1020100
8	2,1	0,21	44100
9	1,3	-0,59	348100
10	1,7	-0,19	36100

Решение:

1) Определим \overline{X} по формуле:

$$\overline{X} = \sum_{i=1}^{n} X_{i},$$

где X1, X2, ... Xi ... Xn – массив экспериментальных данных.

Согласно априорной информации, систематических составляющих погрешностей нет, а разброс наблюдений подчиняется нормальному закону распределения вероятностей. Тогда параметры наблюдений температуры составят:

$$\overline{T} = 1.89 \,^{\circ}\text{C}.$$

2) Рассчитаем среднее квадратическое отклонение (СКО) результата многократного измерения определяется зависимостью:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}}.$$

$$\sigma = 0.59 \, ^{\circ}\text{C}.$$

Для среднего арифметического результата измерения:

$$\overline{\sigma} = \frac{\sigma}{\sqrt{n}}.$$

$$\overline{\sigma} = 0.187 \, ^{\circ}\text{C}.$$

3) Рассчитаем оценку случайной составляющей погрешности по формуле:

$$\Delta = \mp t_{\alpha} \cdot \overline{\sigma}$$

а) с доверительной вероятностью $P\alpha = 0.68$ ($t\alpha = 1$):

$$\Delta = \pm 1 * 0.187 = \pm 0.187 \text{ °C},$$

т.е. после округления результат измерения температуры можно представить в одном из двух вариантов: $\overline{T}=1,89$ °C; $\Delta=\pm0,19$ °C; $P\alpha=0,68$ или $\overline{T}=(1,89\pm0,19)$ °C; $P\alpha=0,68$.

Относительная ошибка:

$$\delta = \frac{t_{\alpha} \cdot \overline{\sigma}}{\overline{X}} \cdot 100\%,$$

где t_{α} – коэффициент Стьюдента, определяемый доверительной вероятностью α

$$\delta = 0.187/1.89 * 100\% \approx 9.9\%$$
.

б) с доверительной вероятностью $P\alpha = 0.95$ ($t\alpha = 2$):

$$\Delta = \pm 2 * 0.187 = \pm 0.374 \, ^{\circ}\text{C}$$

т.е. после округления результат измерения температуры можно представить в одном из двух вариантов: $\overline{T}=1,89$ °C; $\Delta=\pm0,37$ °C; $P\alpha=0,95$ или $\overline{T}=(1,89\pm0,37)$ °C; $P\alpha=0,95$.

Относительная ошибка:

$$\delta = 0.374/1.89 * 100\% \approx 19.8\%.$$

в) с доверительной вероятностью $P\alpha = 0.997$ ($t\alpha = 3$):

$$\Delta = \pm 3 * 0.187 = \pm 0.561$$
 °C,

т.е. после округления результат измерения температуры можно представить в одном из двух вариантов: $\overline{T}=1,89$ °C; $\Delta=\pm0,56$ °C; $P\alpha=0,997$ или $\overline{T}=(1,89\pm0,56)$ °C; $P\alpha=0,997$.

Относительная ошибка:

$$\delta = 0.374/1.89 * 100\% \approx 19.8\%.$$

Задача № 3

Задание:

Определить страну происхождения товара и подлинность штрих-кодов.

Решение:

1) Страна происхождения Россия:

- 2) Применим первый метод:
- а) двигаясь справа налево, суммируем все цифры на четных позициях:

$$3+0+4+8+7+6=28$$
;

б) умножаем полученный результат на 3:

$$28 * 3 = 84;$$

в) суммируем цифры на нечетных позициях. Начинаем с третьей по счету цифре:

$$6+1+6+0+0+4=17$$
;

г) суммируем результаты, полученные в пунктах б и в:

$$84 + 17 = 101$$
;

- д) округлим полученный результат в большую сторону до ближайшего кратного десяти. В данном случае это 110;
 - е) вычтем сумму, полученную при вычислениях в пункте г:

$$110 - 101 = 9;$$

3) Полученный результат соответствует контрольной (последней) цифре штрих-кода – 9, что говорит о подлинности товара.

Задача № 4

Задание:

По экспериментальным данным представленным в таблице 3 построить диаграмму разброса, рассчитать коэффициент корреляции и оценить его достоверность.

Таблица 3 – Экспериментальные данные

№	1	2	3	4	5	6	7	8	9	10
X	0,2	0,4	0,6	0,8	1,0	1,2	1,4	1,6	1,8	2,0
У	12	15	23	24	30	31	38	40	48	52

Решение:

Таблица – Результаты расчетов

№ п/п	Х, °ШР	Y, H
1	0,2	12
2	0,4	15
3	0,6	23
4	0,8	24
5	1,0	30
6	1,2	31
7	1,4	38
8	1,6	40
9	1,8	48
10	2,0	52

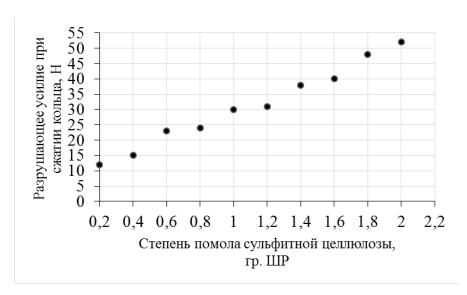


Рисунок 2 – Зависимость разрушающего усилия при сжатии кольца от степени помола сульфитной целлюлозы

1) Для установления силы связи между величинами XY используем коэффициент корреляции, определяемый по следующей формуле:

$$\mathbf{r} = \frac{\sum_{i=1}^{n} \left(\left(x_{i} - \overline{x} \right) \cdot \left(y_{i} - \overline{y} \right) \right)}{\sqrt{\sum_{i=1}^{n} \left(x_{i} - \overline{x} \right)^{2} \cdot \sum_{i=1}^{n} \left(y_{i} - \overline{y} \right)^{2}}},$$

где r – коэффициент корреляции;

хі – текущее значение х;

уі – текущее значение у;

 \overline{x} – среднее значение х;

 \overline{y} – среднее значение у;

n – объем выборки.

$$r = 0.99$$
.

Можно сделать вывод, что между величинами существует сильная положительная корреляция.

2) Оценим достоверность коэффициента корреляции. Для этого вычислим его среднюю ошибку m, по формуле:

$$\mathbf{m}_{\mathrm{r}} = \mp \frac{1 - r^2}{\sqrt{n}},$$

при $r/m_r > 3$ коэффициент корреляции считается достоверным, т.е. связь доказана. При $r/m_r < 3$ связь считается недостоверной.

$$m_r = \pm 0.01$$
.

$$r/m_r = 99$$
.

Коэффициент корреляции считается достоверным, т.е. связь доказана. Список литературы

- 1. Алексеева В.В. Метрология, стандартизация и сертификация: учебник / В.В. Алексеева. М.: Изд. центр «Академия», 2007. 384 с.
- 2. Гончаров А.А. Метрология, стандартизация и сертификация / А.А. Гончаров, В.Д. Копылов М.: Академия, 2008. 240 с.
- 3. Клевлеев В.М. Метрология, стандартизация и сертификация / В.М. Клевлеев, Ю.П. Попов, И.А. Кузнецова. М.: Форум, Инфра-М, 2004. –

- 378 c.
- 4. Колчков В.И. Метрология, стандартизация и сертификация / В.И. Колчков. М.: Владос, 2010. 298 с.
- Кондрашкова Г.А. Метрология. Стандартизация. Сертификация. Квалиметрия. Практикум: учебно-методическое пособие / Г.А. Кондрашкова, И.В. Бондаренкова, Е.П. Дятлова. СПб: ВШТЭ СПбГУПТД, 2019. 114 с.
- 6. Радкевич Я.М. Метрология, стандартизация и сертификация: учебник / Я.М. Радкевич, А.Г. Схиртладзе, Б.И. Лактионов. М.: Высшая школа, 2006. 798 с.
- 7. Сергеев А.Г. Метрология, стандартизация и сертификация: учебное пособие / А.Г. Сергеев, М.В. Латышев, В.В. Терегеря В.В. М.: Логос, 2009. 560 с.
- 8. Хрусталева З.А. Метрология, стандартизация и сертификация. Практикум / З.А. Хрусталева. Кнорус, 2011. 176 с.